

GOES-R Program Overview

Steven Kirkner

November 18, 2003

Outline of Briefing

- GOES-R Program Introduction
 - Mission/Objective
 - Customer/User
 - Team Introductions
 - Mission Requirements
 - Economic Benefits
 - System Growth
- Program Schedule
- System Architect Study

GOES Mission

Satisfies national operational environmental requirements for 24 hour

observation of weather and Earth's environment

- Support storm-scale weather forecasting and numerical modelers
- To meet requirements, GOES
 continuously maintains operational
 satellites at two locations
 (75° West and 135° West)
 - On-orbit spare ready in case of failure
- GOES-I Series (8-12) currently operational
- GOES-N Series (13-15) under contract
- GOES-R Series is the follow-on continuity program to GOES-N Series

GOES R End-to-End Approach

- Implement process to identify and validate user requirements
- GOES-R End-to-End System includes Space and Launch Segment; Command, Control and Communications (C³) Segment; Product Generation and Distribution Segment; Archive and Access Segment; and User Interface Segment.
- Cost Target consistent with acquired GOES I-P cost per satellite year
- Define System Level Architecture
 - Government notional baseline architecture (not final selection)
 used to establish cost, schedule, performance baseline, identify
 associated risk, and assess future system trades
 - Industry effort in FY04/05 to assess alternative architectures

GOES End-to-End System

GOES-R NOAA Program Office

Steve Kirkner......GOES-R Program Manager

Sarah Jenkins..... Secretary

Andrew Carson	HES Acquisition
Gus Comeyne	Spacecraft Acquisition
Dan Flannagan	ABI Acquisition
Ben Diedrich	
Eric Chipman	SIS Acquisition
Les Shipley	
Gus Ryberg	
John Linn	Ground Acquisition
Maggie Eckard	Budget Specialist
Lisa Hurt	Budget Specialist
Jim Gurka	Requirements
Don Gray	Requirements
Roger Heymann	Communications/
	Frequency Request

Jay Moore...... Contract Officer

Elizabeth Carson Acquisition Program Manager David Zehr System Engineer (Integration)
Dan May System Engineer (Integration) John Powell Document Manager
Michael Madden System Engineer
Ken Shere Ground Systems
Adrian Rad Risk Manager
Monica Coakley Mission Requirements

Statement of Need

- Replacement Satellite required by end of 2012 to maintain GOES Continuity
- User Requirements III Improved Sensors
 - Better temporal, spatial and spectral resolution
 - Climate, coastal, and estuary measurements
 - Traditional meteorological requirements
- Requires Follow-on System
 - 10 year acquisition cycle
 - 2012 Launch Date
 - 2013 Operational Availability
 - Develop integrated end-to-end ground and satellite systems

Statement of Need Supports NOAA Strategic Goals

Ecosystem

- Determine environmental impacts of chaotic processes
 - Ocean Color
 - Ocean Optical Properties
 - Ocean Turbidity
 - Ocean Currents

Climate

- Provide quantitative environmental data for use in weather and climate prediction and analysis
 - Ozone Layers
 - CO2 Concentration
 - Vegetation Index

Weather and Water

- Real time weather data to accurately track and analyze severe weather events and reduce loss of life and property
 - Temperature Profiles
 - Lightening Detection
 - Cloud Measurement
 - Wind Currents
 - Space Weather

Commerce

- Uninterrupted hemispheric observations and products for safe and efficient transportation and commerce systems
 - Volcanic Ash
 - Solar Radiation
 - Ice

GOES Customers

(Source of Requirements)

National Weather Service

- Weather Forecast Offices
- National Center for Environmental Predictions (NCEP)
 - TPC (Tropical Prediction Centers)
 - Aviation Weather Center
 - Space Environmental Center
 - Storm Prediction Center
 - Hydro Meteorological Prediction Center
 - Climate Prediction Center
 - Ocean Prediction Center
 - Environmental Modeling Centers
- National Operational Hydrologic Center
- River Forecast Centers

NESDIS

- Synoptic Analysis Branch
- National Center for Atmospheric Research

National Marine Fisheries Service (NMFS)

- Alaskan Regional Office (AKR)
- Alaskan Fisheries Science Center (AKC)
- National Marine Mammal Laboratory (NMML)
- Southeast Region Office (SER)
- Southeast Fisheries Science Center (SEC)
- Northeast Fisheries Science Center (NEC)
- Northwest Fisheries Science Center (NWC)
- Southwest Fisheries Science Center (SWC)
- Office of Protected Resources (F/PR)
- Office of Sustainable Fisheries (F/SF)

National Climatic Data Center

Department of Defense

- US Army
- US Air Force
- US Navy

GOES Other Users

- Department of Interior (DOI)
- Department of Commerce (DOC)
- Department of Agriculture (DOA)
- Department of Energy (DOE)
- U S Department of Education
- Centers for Disease Control and Prevention
- Environmental Protection Agency (EPA)
- Bureau of Reclamation
- Soil Conservation
- Bureau of Land Management
- United States Forest Service
- State Division of Water Resources
- Flood Control Districts
- NASA
- Forensic Services (Law)
- Federal Emergency Management Agency
- Department of Transportation

- Private Meteorological Companies
 The Weather Channel, Accu-weather, WSI
- Media
 The Weather Channel, Associated Press, Radio and Television News Directors Association, Professional Meteorologists and Hydrologists
- Universities
 Colorado State University, University of Wisconsin,
 Brazilian Instito Nacional de Pesquisas Espaciais,
 University of Reading England
- Morld Meteorological Organization Geneva (Switzerland), Regional Meteorological Training Centers (Barbados and Costa Rica), International Civil Aviation Organization Environmental (Canada), Search & Rescue-(USA, France, Russia, Norway, and Canada), UKMET (United Kingdom Meteorological Office), World Weather Watch Regional Basic Synoptic Network, European Organisation for the Exploration of Meteorological Satellite (EUMETSAT), European Center for Medium-range Weather Forecasting (ECMWF)
- Smithsonian Institute
 International Climate Change Research and Modeling
- Local Fire, Police, Safety Departments
- Industry
 Construction, Insurance, Energy Companies, Trucking and Transportation Companies, Agriculture
 10

GOES-R User Requirements

- Extensive User Involvement
 - GOES User Conferences 2001 and 2002
 - Data User Conference 2003
- Draft Statement of Need Draft Oct 03
- GOES-R Program Requirements Document (GPRD) Feb 02
 - Consolidated initial set of requirements to direct trade and cost studies
 - NOAA's initial Mission Requirements Document (MRD) signed and delivered to NASA on Dec 6, 2002. Update produced July 11, 2003.
- Jun 03 Draft GPRD final DUS signature planned for 2QFY04
 - Includes all NOAA/DOD requirements
 - Begins to identify other Federal Agencies user requirements
 - More complete end-to-end requirements
 - Refines Feb 02 Draft GPRD based on trade results & user input
 - Used to govern further definition & design efforts
 - Used for system requirements validation per NOAA Requirements Process
- GPRD will evolve as program matures

Users

Other

GOES-R Requirements Mapping

Requirements **NOAA Users**

GPRD

Climate,

Water,

య

Ecosystems,

Transportation

NWS

OAR

NOS

NMFS

NMAO

PPI

NESDIS

Aerosols

Clouds

Precipitation

Atmospheric **Profiles**

Atmospheric Radiance

Atmospheric Winds

Land

Ocean

Coastal Waters & Estuaries

Space & Solar

Instruments

Adv. Baseline Imager (ABI)

Hyperspectral **Environmental** Suite (HES)

Solar Imaging Suite (SIS)

MRD

Space Env. In-Situ Suite (SEISS)

GOES Lightning Mapper (GLM)

Microwave Sounder/Imager

Coronagraph

Hyperspectral Imager

Solar Irradiance Sensor

Potential P3I

GOES N Products by Instrument

41 Products

29 Operational, 12+ Experimental


```
Clouds
Channel brightness temperature
Cloud drift winds from 3.9 um band
Cloud top pressure*
Effective cloud amount
Geopotential Height*
High Density Winds---Low Level*
High Density Winds---Mid Level*
High Density Winds---Upper Level
Hydro-estimator
Interactive Flash Flood Analyzer (?)
Layer precipitable water
Lifted index
Low Level High Density Satellite Winds
Low level winds (picture triplet)*
Multichannel precipitation
Precipitation Index Histograms
Real time remapped imagery
Site Specific clouds
Snow and Ice chart
Surface Skin Temperature*
Thermal Wind Profiles (gradient winds)
Total Precipitable Water*
Tropical Cyclone
Verticle Temperature and Moisture Profiles*
Volcanic Ash Product*
Water Vapor Winds
Wildfire Automated Bimass Burning Algorithms (WF_ABBA)
Aircraft icing (Exper.)*
Clear Sky Brightness Temperature (Exper.)
Fog (Exper.)*
Fog Depth (Exper.)
Hot Spot and Smole analysis from Hazard Mapping System (Exp)
Imager and Sounder calibration
Merged Automatic Cloud and Aerosl Detection (MACADA)
Ozone estimate (Exper.)
Radiances (Exper., 3 layers)
Reflectivity (Exper.)
Sea Surface Temperature (Exper.)*
WINDEX (Exper.)
RAMSIS movies
```

Green = Imager (ABI)

Orange = Sounder (HES)

*Asterisk indicates no name change

GOES-R Observational Requirements

Preliminary Instrument Allocation

Absorbed Shortwave Radiation	Downward Solar Insolation	Rainfall Potential	
Aerosol Detection	Dust/Aerosol	Reflected Solar Insolation	
Aerosol Particle Size	Energetic Heavy Ions	Sea & Lake Ice/ Displacement and Direction	
Aircraft Icing Threat	Enhanced "V"/Overshooting Top Detection	Sea & Lake Ice/Age	
Atmospheric Vertical Moisture Profile	Fire / Hot Spot Imagery	Sea & Lake Ice/Concentration	
Atmospheric Vertical Temperature Profile	Flood/Standing Water	Sea & Lake Ice/Extent and Characterization	
Capping Inversion Information	Geomagnetic Field	Sea & Lake Ice/Surface Temp	
Clear Sky Masks	Hurricane Intensity	Sea Surface Temps	
Cloud & Moisture Imagery	Ice Cover/ Landlocked	Snow Cover	
Cloud Base Height	Land Surface (Skin) Temperature	Snow Depth	
Cloud Ice Water Path	Lightning Detection	SO ₂ Concentration	
Cloud Layers / Heights and Thickness	Low Cloud and Fog	Solar and Galactic Protons	
Cloud Liquid Water	Mag Electrons & Protons: Low Energy	Solar Flux: EUV	
Cloud Optical Depth	Mag Electrons & Protons: Med & High Energy	Solar Flux: X-Ray	
Cloud Particle Size Distribution	Microburst Winds	Solar Imagery	
Cloud Phase	Moisture Flux	Surface Albedo	
Cloud Top Height	Ocean Currents	Surface Emissivity	
Cloud Top Pressure	Ocean Color	Suspended Matter	
Cloud Top Temperature	Ocean Optical Properties Total Precipitable Water		
Cloud Type	Ocean Turbidity	Total Water Content	
CO Concentration	Ozone Layers	Turbulence	
CO ₂ Concentration	Ozone Total	Upward Longwave Radiation	
Convection Initiation	Pressure Profile	Vegetation Fraction	
Derived Motion Winds	Probability of Rainfall	Vegetation Index	
Derived Stability Indices	Radiances	Visibility	
Downward Longwave Radiation		Volcanic Ash	

ABI – Advanced Baseline Imager HES – Hyperspectral Environmental Suite

SEISS – Space Env. In-Situ Suite SIS – Solar Instrument Suite GLM – GOES Lightning Mapper

GOES Product Improvements

- Severe storm and flood warnings
- Tropical cyclone (hurricane reconnaissance and warnings)
- Hydrologic forecasts and water resources management
- Short-term and mesoscale forecast
- Ocean surface and internal structures forecasts
- Medium range forecast outlook (out to fifteen days)
- Solar and space environmental forecasts
- Aviation forecasts (domestic, military, and international)
- Ice conditions forecasts
- Seasonal and inter-annual climate forecasts
- Decadal-scale monitoring of climate variability
- Environmental air quality monitoring and emergency response
- Fire and volcanic eruption detection and analysis
- Long-term global environmental change assessment

Benefit Areas Identified

Aviation

- Improve plane deicing efficiency
- Improve volcanic ash avoidance
- Reduce airborne lightning
- Reduce delay times
- Avoid radiation storm damage from galactic events

Insurance/Emergency Services

- Improve preposition prior to disasters
- Reduce recall and delay times

Agriculture

- Increase crop production
- Reduce water waste
- Reduce water reallocations

Maritime Boating

- Improve hurricane lead time
- Improve thunderstorm warning
- Reduce boat damage
- Improve severe lightning warnings
- Better understanding of weather conditions

Transportation

- Improve severe weather lead-time
- Reduce delay times
- Allow in vehicle monitoring with GPS guidance

Utilities (Electric, Nat Gas)

- Improve temperature accuracy
- Improve load forecasting
- Reduce power outages
- Reduce major blackouts and pipeline damage resulting from galactic storms

System Improvements

GOES N Instruments	GOES R Notional Baseline
Imager 5 Channels	Advanced Baseline Imager (ABI) 16 Channels
Multispectral Sounder 18 Channel	Hyperspectral Environmental Suite (HES) 1500 Channel Sounder 14 Channel Imager
Solar X Ray Imager Space Environmental Monitor	Solar Imaging Suite (SIS) Space Environmental In Situ Suite (SEISS)
N/A	GOES Lightning Mapper (GLM)

GOES R Imager Improvements

Parameter	GOES I - N Imager		GOES R ABI	
Spatial Resolution	Visible	~1.0 km	1 Visible	0.5 km
			3 Vis/IR	1.0 km
			0.47, 0.68 & 1.6	1μm
	IR	~4.0 km	12 IR	2.0 km
			1.38 μm & >2.0	μm
Coverage Area	Full Disk		Full Disk	
Coverage Rate			Scan Mode 3	
	Full Disk: 30 min		Full Disk: 15 min	
	CONUS: 15 min		CONUS: 5 min	
			Mesoscale: 30 s	sec
			Scan Mode 4	
			Full Disk: 5 min	
			CONUS: 5 min	(in FD)
Spectral Bands	5 bands		16 ban	ds
Low Light Capability	N	lo .	Yes	18

GOES Sounder Improvements

Parameter	GOES I and N Sounder		GOES R HES	
Spatial Resolution	Visible	~1.0 km	Visible:	1.0 km
			SW/M:	4.0 km
	IR	10.0 km	62 ° LZA:	10.0 km
			Coastal Waters:	0.3 km
Coverage Area	CONUS		62° Local Zenith Angle (LZA)	
Coverage Rate	CONUS: 60 min		62 ° LZA: SW/M: (1000 km x 1000 Coastal Waters: (1000 km x 400 l	3 hour
Spectral Bands	19 Sounding bands		~1500 Sounding bands 14 Imaging bands	
RMS Temperature Error	~2° K		~1° K	
RMS Humidity Error	~20%		~10%	
Low Light Capability	No		Yes	19

SIS/SEISS Improvements

- Space weather on GOES R will be measured with
 - Solar Imaging Suite (SIS)
 - Space Environmental In Situ Suite (SEISS)
- Suite will be capable of performing the following tasks
 - Near Real time measurements
 - Operate and transmit during eclipses
 - Each instrument will operate independently
- Extreme UV measurements 5 channels to 7 or 8 channels

GOES Lightning Mapper

- New NOAA instrument
- Hemispheric or CONUS Coverage
- Detects total strikes including intra-cloud, cloud to cloud, and cloud to ground lightning
 - Land Based Ground Systems only detect Cloud to Ground
 - Cloud to Ground only accounts for 15% total lightning
- 10 km resolution (1 km goal)
- 1 km mapping accuracy (100 m goal)
- Continuous detection
- Increased coverage over lands and oceans
 - Currently No Ocean Coverage, and
 - Limited Land Coverage in Dead Zones

Ground Improvements

Parameter	GOES I and N	GOES R
Rebroadcast Data	2.11 Mbps	5 - 24 Mbps
Rate	(GVAR)	(under review)
Total Downlink	2.1 Mbps	132 Mbps
Daily Output	181 Gb	16000 Gb
Total Products	41	160
Class Data Storage	N/A	Daily: .5TB
		7 year life: 1100TB
Raw Data Storage	0 days	30 days

GOES-R Need Date

GOES R must be operationally available (launched and checked out) by this date to provide coverage in the event of an unexpected loss of O or P

- Launch dates driven by need for 2 operational and at least 1 on-orbit spare at all times
- GOES-R must be launched by Oct 2012, in order to be sufficiently checked out and available as on-orbit spare when P is turned on (planned for Apr 2013)
- 12, N, P projected operations determine when R must be launched as spare next scheduled update is 2008 (planned N turn on)
- 10, 11, O projected operations affect system availability percentage, but not R need date

GOES-R Schedule

(August 1, 2003)

Program Assumptions for Acquisitions

- Major Instruments GFE to Spacecraft 18-24 months prior to first launch
- Launch vehicle is GFE
- Ground System to Space System Interface Control Document developed by NOAA/NASA
- Approximate 4-6 month gap between Design/Risk Reduction and Production/Operations Phases
- 60 month duration on implementation phase for each major instrument and spacecraft

Typical Design/Risk Reduction Schedule (12 to 24 Months)

Technology Infusion

- Design/Risk Reduction Phase
 - Leverage contractors knowledge and experience
 - Determine technology availability versus requirements
 - Demonstrate a technology readiness level of TRL-6 by Preliminary Design Review (PDR)
 - Design/Risk Reduction Contractors provide Risk Mitigation Plan
- Leverage Government and FFRDC Technical Knowledge and Technology Availability
 - Participate in the development of technology roadmaps
 - Provide point designs for the instruments and segments
- Funding GSFC technologies i.e. encoders and detectors
- Attaching Catalog of Known Technologies to RFP's e.g. GIFTS

Actual System "flight proven" through successful mission operations

Actual system completed & "flight qualified" through test & demo

System prototype demo in an actual environment

System/subsystem validation model or prototype demo in a relevant environment

Component and/or breadboard in relevant environment

Component and/or breadboard in laboratory environment

Analytical & experimental critical function and/or characteristic proof-of-concept

Technology concept and/or application formulated

Basic principles observed and reported

End to End System Architecture

- System Architecture Definition
 - Explore GOES-R end-to-end architectural options existing notional baseline or establish new one
 - Define links and applicability to NOSA/National/International architectures
- System Architecture Objectives
 - Requesting Alternative Design Approaches from Industry.
 - Permitting Varying Technical/Scientific Approaches to be Applied.
 - Allowing Industry To Apply Its State-of-the-Art Advancement.
 - More Flexibility in Contractor, and Government Solutions

Architecture Study Goals

Will Accomplish

- Initiation of End-to-End Integration Studies
- Identification of Risk Factors Prior to Formulation Contract
- Start of Accommodation Studies
- Development of Life Cycle Cost Estimate
- Study of Cost Containment Strategies for Operation and Maintenance
- Assessment of Distributed, Consolidated, and Other Space Segment Architecture
- Analysis of Rebroadcast Options and Alternatives
- Establishment of System Integrator Functions
- Identification of Global Observation Possibilities
- Study of Alternatives for Handling Auxiliary Service

Baselined Instrument Schedules FY04 Activities

ABI

- Development/Production
 - Jan 04 Final RFP Release
 - Feb 04 Proposals Received
 - Jul 04 Contract Award

HES

- Design/Risk Reduction
 - Nov 03 Final RFP Release
 - Mar 04 Contract Award (No BAFO)

SIS

- Design/Risk Reduction
 - Dec 03 Draft RFP Release
 - Dec 03 Acquisition Strategy Meeting
 - Jan 04 Final RFP Release
 - Feb 04 Proposals Received
 - May 04 Contract Award

SEISS

- Design/Risk Reduction
 - Dec 03 ASM
 - Jan 04 Draft RFP Release
 - Mar 04 Final RFP Received
 - May 04 Proposals Received
 - Aug 04 Contract Award

Summary

- GOES-R is an End-to-End System
 - System Architecture and Integration
 - Instruments
 - Spacecraft/Launch Services
 - Command, Control, Communications
 - Product Generation and Distribution
 - Access and Archive
 - User Interface
- GOES-R will provide 160 products that meet the User Requirements
 - Factor of 4 over current products (40)
 - Factor of 60-80 increased data rates
- GOES-R Launch Date is Oct 2012
 - Major Acquisition require 10 years
- GOES-R is an action-packed acquisition program to monitor sun, space, atmosphere, land, and ocean real time conditions; thus, allowing NOAA/NWS and users to achieve quicker, more efficient environmental forecast that ultimately protect the American Public.

GOES CORE VALUES

inteGrity
innOvation
execEllence
reSpect

Trust
Enhancing
Atmospheric
Monitoring

Mission Statement

To work as an effective, integrated Government & Industry team to ensure the economical, timely, and successful delivery of a highly technical Geosynchronous Space and Earth Environment Observing Satellite System used to predict the weather and climate change; to protect life, property, and the nation's vital interests; and to enhance the global quality of life.